A LASSO-based approach to analyzing rare variants in genetic association studies
نویسندگان
چکیده
Genetic markers with rare variants are spread out in the genome, making it necessary and difficult to consider them in genetic association studies. Consequently, wisely combining rare variants into "composite" markers may facilitate meaningful analyses. In this paper, we propose a novel approach of analyzing rare variant data by incorporating the least absolute shrinkage and selection operator technique. We applied this method to the Genetic Analysis Workshop 17 data, and our results suggest that this new approach is promising. In addition, we took advantage of having 200 phenotype replications and assessed the performance of our approach by means of repeated classification tree analyses. Our method and analyses were performed without knowledge of the underlying simulating model. Our method identified 38 markers (in 65 genes) that are significantly associated with the phenotype Affected and correctly identified two causal genes, SIRT1 and PDGFD.
منابع مشابه
Comparison of statistical approaches to rare variant analysis for quantitative traits
With recent advances in technology, deep sequencing data will be widely used to further the understanding of genetic influence on traits of interest. Therefore not only common variants but also rare variants need to be better used to exploit the new information provided by deep sequencing data. Recently, statistical approaches for analyzing rare variants in genetic association studies have been...
متن کاملBayesian analysis of rare variants in genetic association studies.
Recent advances in next-generation sequencing technologies facilitate the detection of rare variants, making it possible to uncover the roles of rare variants in complex diseases. As any single rare variants contain little variation, association analysis of rare variants requires statistical methods that can effectively combine the information across variants and estimate their overall effect. ...
متن کاملThe group exponential lasso for bi-level variable selection.
In many applications, covariates possess a grouping structure that can be incorporated into the analysis to select important groups as well as important members of those groups. One important example arises in genetic association studies, where genes may have several variants capable of contributing to disease. An ideal penalized regression approach would select variables by balancing both the ...
متن کاملEvaluation of logistic Bayesian LASSO for identifying association with rare haplotypes
It has been hypothesized that rare variants may hold the key to unraveling the genetic transmission mechanism of many common complex traits. Currently, there is a dearth of statistical methods that are powerful enough to detect association with rare haplotypes. One of the recently proposed methods is logistic Bayesian LASSO for case-control data. By penalizing the regression coefficients throug...
متن کاملIdentification of Grouped Rare and Common Variants via Penalized Logistic Regression
In spite of the success of genome-wide association studies in finding many common variants associated with disease, these variants seem to explain only a small proportion of the estimated heritability. Data collection has turned toward exome and whole genome sequencing, but it is well known that single marker methods frequently used for common variants have low power to detect rare variants ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011